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SAMPLE SOLUTIONS EXERCISE 3

EXERCISE 3.1: SYMMETRY AND DEGENERACIES (5P)

(a) Suppose that the operators a, b, ¢ satisfy the commutation relation [a, b] = c. Show
that the operators A=a®1+1®a, B=b®1+1®b,andC=c®1+1®c
obey exactly the same commutation relation [A,B] = C.

(b) Assume that 0™, 0=, m obey the su(2) algebra [07,07] = 2m and [m, 0*] = +o*.
Then the operators S* =0 ®1+1®0cT and M = m® 1 + 1 ® m obey the same
algebra. Show without using a representation that the so-called Casimir operator

C= %(S*S +S7ST) + M?

commutes with ST and M.

(¢) Use the Pauli representation 0* = $(0® £i0¥) and m = 307 in order to verify that

the 2-site exclusion process with symmetric rates wy, = wg =1 and a = g = 0 is
(up to a minus sign and an offset proportional to the identity matrix) equal to the
Casimir operator C, proving that this model is SU(2)-invariant.

SAMPLE SOLUTION

(a) Here we simply apply the calculation rules for tensor products:
ABl=(a®l1+1®a)(bl+1®b)-(b®l+1®b)(a®l+1®a)
=+ab®l+a®b+b®a+1®ab
—ba®l-b®Ra—a®b—-1®ba
=la,bj®l+l®[ab =cl+l®c = C
(b) We first show that [C,S™] = 0. A straight-forward algebraic calculation gives:
M2 ST] = M[M, S|+ [M,STIM = S™™M + MS™

1 1
S[8TST+878t 87 = 5([s+s—, St +[S"ST, s+]>

1
- f(s+ [S7,8%]+[ST,ST]S™ + S~ [S*, 8] +[S™,S7] s+)
2 —_——  —— —_——  ——
=—2M =0 =0 =—2M
= —(STM + MS™)
Adding both equations gives [C,ST] = 0. Similarly we can prove that [C,S™] =
0. It remains to be shown that [C,M] = 0:

1 1
€, M] = J[STS™ +87S" + M?, M] = 5([s+s— +S7St, M|+ [M2,M]>

=0

(s+[s—,M] +[ST,M]S™ +S7[ST,M] + [s—,M]s+)

DN = DN -

StTS™ -S*tS™ -8 St +S7ST) = 0.
( )



(¢) In the Pauli basis the 1-site operators are given by the matrices

e f(0ry o _(ooy 1/l 0
—\0 0/ “\t o) T2 0 -1

The corresponding 2-site operators, which have been shown to obey the same
algebra (you may check it here again) is given by

01 10 00 00 100 0
00 01 100 0 000 O
+ _ - _(q"\T _ _
S_00017S_(S)_1000’M_0000
00 00 01 10 0 00 —1
It is then straight-forward to compute the Casimir and to compare it with the
Liouvillian:
2 0 00 0 0 0
01 10 0 1 -1 0
C=lo11 0 s = o o1 1o
00 0 2 0 0 0 0

hence C = 21444 — L. For this reason, £ commutes with ST, S, M, leading
to SU(2)-like degeneracies in the spectrum, namely, one triplet and a singlet
(see lecture notes).

EXERCISE 3.2: SPECTRUM-GENERATING ALGEBRA (7P)
Let us consider a three-site symmetric exclusion process (w;, = wg = 1) 11
with closed boundaries as shown in the figure. Its Liouvillian is given by @ @
L = L5 + Lo3 where 1 1

XI:£12:£(2)®11, Y:£23:]]_®£(2)

L has the eigenvalues {0,0,0,0,1,1,3,3} (on quartet and two doublets). Our aim is to
compute the eigenvalues of L solely by algebraic methods without using any representa-
tion, in a similar way as one solves the harmonic oscillator in terms of a, a'.

(a) Verify that the matrices X and Y obey the so-called Temperley-Lieb algebra

Idempotence — X* = 2X, Y? =2V
Braid group property XY X =X, YXY =Y

Please use from now on exclusively the symbols X and Y and the four algebraic
relations given above. Do not use their explicit matrix representation.

(b) Specify the monomials of the algebra, i.e., the elementary words formed by the
letters X and Y that cannot be reduced by means of the algebraic relations.

(c) Joining two monomials by concatenation and applying the algebraic relations one
obtains another monomial. List all possible results in a table.



(d) Now consider a polynomial, i.e., a linear combination of all monomials with arbitrary
coefficients. Apply the Liouvillian to this polynomial and find the resulting poly-
nomial, showing how the Liouvillian acts in the linear space of polynomials.

(e) Determine the eigenpolynomials of L = X + Y, i.e., those polynomials which are
mapped by £ onto themselves up to a factor. Calculate the corresponding eigenva-
lues and compare them with the spectrum given above.

SAMPLE SOLUTION

There are in principle two ways: We may include the identity in the algebra or we
may not. The following sample solution describes the latter.

(a) As can be checked by using Mathematica® | the two matrices

0 0 0 0 0 0 0 O 0 0 0 0o 0 0 0 0

0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0

0 0 1 0 —1 0 0 0 0o -1 1 0o 0 0 0 0

X _ 0 0 0 1 0 -1 0 0 Y _ 0 0 0 0o 0 0 0 0
- o 0o -1 0 1 0 0 0 - 0 0 0 0o 0 0 0 0

0 0 0 —1 0 1 0 0 0 0 0 0o 0 1 -1 0

0 0 0 0 0 0 0 0 0 0 0 o 0 -1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

do obey the given algebraic relations.

(b) The algebraic rules X2 oc X and Y2 oc Y imply that the adjacent symbols in a
monomial have to be different (because otherwise you could apply those rules
and reduce them). This means that monomial can only consist of alternating
sequences of X and Y. However, such sequences with three or more symbols
are reduced by means of the braid group relations XY X = X and Y XY =
Y. Therefore, the allowed monomials are words consisting of at most two
alternating symbols, meaning that there are in total four monomials, namely,
{X,Y, XY, Y X}. Sometimes it is useful to add the empty work or the identity,
denoted as E or 1, but in the present context this does not make a difference.

(¢c) The map table reads:
| X Y XY YX
X | XX XYy  XXY XYX
Y | YX YY YXY YYX
XY | XYX XYY XYXY XYYX
YX | YXX  YXY YXXY YXYX.
Applying the algebraic relations the results can be expressed again in terms
of the monomials as

X Y XY ¥YX
X 2X XY 2XyY X
Y | YX 2Y Y 2YX
XY | X 2XY XY 2X
YX | 2YX Y 2Y YX

(X +Y) (aX +bY +cXY +dYX) =

aXX +b0XY +cXXY +dXYX +aY X +0YY +cY XY +dYY X =
20X +0XY +2cXY +dX +aY X +20Y +cY +2dY X =

2a+d) X+ (2b+c)Y + (b+2¢) XY + (a +2d) YX

~—— ~—— —— ~——

=a’ =b’ =c/ =d’



(e) As can be seen, this map can be interpreted as a linear map in the 4-dimensional
space of the algebra

a a 2 0 01 a
vl v o2 1o
dl cl |01 20 c
d d 1 0 0 2 d

The eigenvectors of this 4x4 matrix read
{{1,0,0,1},{0,1,1,0},{—1,0,0,1},{0,—1,1,0}}

This implies that the corresponding eigenpolynomials are given by
X+YX, Y+XY, -X+4YX, -Y+XY.

The eigenvalues of the 4x4 matrix are {3,3,1,1}.
As can be seen, the eigenvalues of the original 8 x8-Liouvillian {3,3,1,1,0,0,0,0}
have the same numerical values but different degeneracies.

Remark: If one adds the empty word (identity) F as an additional monomial,
which is represented by a unit matrix, one obtains a 5x5 eigenvalue problem.
This contains also the stationary state with the eigenvalue 0 and the eigenword

3E-2X -2Y + XY +YX.

Including the eigenvalue zero we can see that all possible eigenvalues of the
original spectrum can be reproduced algebraically, although with different de-
generacies. Therefore, the Temperley-Lieb-Algebra) is also referred to as the
spectrum-generating algebra or in short the spectral Algebra of the Liouville-
Operator.

It is also possible to work with the Temperley-Lieb-Algebra on chains with
more than three sites. To this end one associates a Temperley-Lieb opera-
tor e; to every pair of sites 7,7 + 1. All these Temperley-Lieb operators are
idempotent (e? = 2¢;) and fulfill the braid group relation with their nearest
neighbors e;e;41¢; = e;. With non-adjacent operators, however, they commu-
te, i.e. [ej,ej] = 0 for |i — j| > 2. For more information please refer to the
lecture notes.

(X = 12P)



